Maximal Independent Sets in Clique-free Graphs

Sam Spiro, Rutgers University.

Joint with Xiaoyu He and Jiaxi Nie

History

A maximal independent set (MIS) is an independent set $I \subseteq V(G)$ which is maximal with respect to set inclusion.

History

Let $m(n)$ denote the maximum number of MIS's in an n-vertex graph.

History

Let $m(n)$ denote the maximum number of MIS's in an n-vertex graph.

Theorem (Miller, Muller 1960; Moon, Moser 1965)
If $n \geq 2$, then

$$
m(n)=\left\{\begin{array}{lll}
3^{n / 3} & n \equiv 0 & \bmod 3 \\
4 \cdot 3^{(n-4) / 3} & n \equiv 1 & \bmod 3 \\
2 \cdot 3^{(n-2) / 3} & n \equiv 2 & \bmod 3
\end{array}\right.
$$

History

Let $m_{3}(n)$ denote the maximum number of MIS's in an n-vertex triangle-free graph.

History

Let $m_{3}(n)$ denote the maximum number of MIS's in an n-vertex triangle-free graph.
Theorem (Hujter, Tuza 1993)
If $n \geq 4$, then

$$
m_{3}(n)=\left\{\begin{array}{lll}
2^{n / 2} & n \equiv 0 & \bmod 2 \\
5 \cdot 2^{(n-5) / 2} & n \equiv 1 & \bmod 2
\end{array}\right.
$$

History

Let $m(n, k)$ denote the maximum number of MIS's of size k that an n-vertex graph can have.

History

Let $m(n, k)$ denote the maximum number of MIS's of size k that an n-vertex graph can have.

Theorem (Nielsen 2002)

If $s \in\{0,1, \ldots, k-1\}$ with $n \equiv s \bmod k$, then

$$
m(n, k)=\lfloor n / k\rfloor^{k-s}\lceil n / k\rceil^{s} .
$$

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have.

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have. Given the previous constructions, we might expect that the maximizer for $m_{t}(n, k)$ will consist of the disjoint union of some "nice" graphs.

Clique-free Graphs

Define $m_{t}(n, k)$ to be the maximum number of k-MIS's that an n-vertex K_{t}-free graph can have. Given the previous constructions, we might expect that the maximizer for $m_{t}(n, k)$ will consist of the disjoint union of some "nice" graphs. One reasonable construction is a comatching.

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

$$
m_{3}(n, 3)=\Omega(n)
$$

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

$$
m_{3}(n, 3)=\Omega(n)
$$

$$
m_{3}(n, 4)=\Omega\left(n^{2}\right)
$$

Clique-free Graphs

$$
m_{3}(n, 2)=\Omega(n)
$$

$$
m_{3}(n, 3)=\Omega(n)
$$

$$
m_{3}(n, 4)=\Omega\left(n^{2}\right)
$$

More generally this shows $m_{t}(n, k)=\Omega\left(n^{\lfloor k / 2\rfloor}\right)$ for fixed k.

Clique-free Graphs

Reasonable Question

Is it the case that for all k, t we have

$$
m_{t}(n, k)=O_{k, t}\left(n^{\lfloor k / 2\rfloor}\right)
$$

Clique-free Graphs

Reasonable Question

Is it the case that for all k, t we have

$$
m_{t}(n, k)=O_{k, t}\left(n^{\lfloor k / 2\rfloor}\right)
$$

Theorem (He, Nie, S. 2021)
For $n \geq 8$ we have

$$
m_{3}(n, 2)=\lfloor n / 2\rfloor,
$$

and the unique graph achieving this bound is a comatching of order n.

Clique-free Graphs

Reasonable Question

Is it the case that for all k, t we have

$$
m_{t}(n, k)=O_{k, t}\left(n^{\lfloor k / 2\rfloor}\right)
$$

Theorem (He, Nie, S. 2021)
For $n \geq 8$ we have

$$
m_{3}(n, 2)=\lfloor n / 2\rfloor,
$$

and the unique graph achieving this bound is a comatching of order n. Moreover, we have

$$
\begin{aligned}
& m_{3}(n, 3)=\Theta(n), \\
& m_{3}(n, 4)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Better Constructions

Proposition

For all $t \geq 4$,

$$
m_{t}(n, 3) \geq n^{2-o(1)}
$$

Better Constructions

Proposition

For all $t \geq 4$,

$$
m_{t}(n, 3) \geq n^{2-o(1)} .
$$

Ruzsa-Szemerédi: there exists an n-vertex tripartite graph G on $U \cup V \cup W$ with $n^{2-o(1)}$ edges such that every edge is contained in a unique triangle.

Better Constructions

Proposition

For all $t \geq 4$,

$$
m_{t}(n, 3) \geq n^{2-o(1)} .
$$

Ruzsa-Szemerédi: there exists an n-vertex tripartite graph G on $U \cup V \cup W$ with $n^{2-o(1)}$ edges such that every edge is contained in a unique triangle. Let G^{\prime} be the "tripartite complement" of G, i.e. take the complement \bar{G} and then delete all the edges within each of the parts U, V, W.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a 3 -MIS in G^{\prime}.

Better Constructions

Claim: every triangle $T=\{u, v, w\}$ in G is a $3-\mathrm{MIS}$ in G^{\prime}. Since G contains $n^{2-o(1)}$ triangles, and since the tripartite graph G^{\prime} is K_{t}-free for $t \geq 4$, we conclude the result.

Better Constructions

Using generalization of the Ruzsa-Szemerédi construction due to Gowers and Janzer gives:

Theorem (He, Nie, S. 2021)
For all fixed k, t, we have

$$
m_{t}(n, k) \geq n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor-o(1)}
$$

Better Constructions

Using generalization of the Ruzsa-Szemerédi construction due to Gowers and Janzer gives:

Theorem (He, Nie, S. 2021)

For all fixed k, t, we have

$$
m_{t}(n, k) \geq n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor-o(1)}
$$

Reasonable Question

Is this bound essentially tight? In particular, for triangle-free graphs do we have

$$
m_{3}(n, k)=\Theta\left(n^{\lfloor k / 2\rfloor}\right)
$$

Better Construction: Blowups

Better Construction: Blowups

Theorem (He, Nie, S. 2021)
For all $k \geq 4$,

$$
m_{3}(n, k)=\Omega\left(n^{k / 2}\right)
$$

Better Construction: Blowups

Theorem (He, Nie, S. 2021)
For all $k \geq 4$,

$$
m_{3}(n, k)=\Omega\left(n^{k / 2}\right)
$$

One can generalize this construction by taking blowups of arbitrary triangle-free graphs.

Better Construction: Blowups

Theorem (He, Nie, S. 2021)
For all $k \geq 4$,

$$
m_{3}(n, k)=\Omega\left(n^{k / 2}\right) .
$$

One can generalize this construction by taking blowups of arbitrary triangle-free graphs. One can also generalize it to hypergraphs (using interwoven copies of Rusza-Szemerédi type constructions).

Better Construction: Blowups

Theorem (He, Nie, S. 2021)

For all $k \geq 4$,

$$
m_{3}(n, k)=\Omega\left(n^{k / 2}\right) .
$$

One can generalize this construction by taking blowups of arbitrary triangle-free graphs. One can also generalize it to hypergraphs (using interwoven copies of Rusza-Szemerédi type constructions).

Theorem (He, Nie, S. 2021)
$t \geq 3$ and $k \geq 2(t-1)$, then

$$
m_{t}(n, k) \geq n^{\frac{(t-2) k}{t-1}-o(1)}
$$

Upper Bounds

We think these lower bounds are essentially best possible:

Conjecture (He, Nie, S.; S.)

For all fixed k, t, we have

$$
m_{t}(n, k)=O\left(n^{\frac{(t-2) k}{t-1}}\right)
$$

Moreover, for $k<2(t-1)$ we have

$$
m_{t}(n, k)=O\left(n^{\left\lfloor\frac{(t-2) k}{t-1}\right\rfloor}\right)
$$

Upper Bounds

Proposition

For all $k<t$ we have

$$
m_{t}(n, k)=O\left(n^{\left\lfloor\left(\frac{(t-2) k}{t-1}\right\rfloor\right.}\right)=O\left(n^{k-1}\right)
$$

Upper Bounds

Proposition

For all $k<t$ we have

$$
m_{t}(n, k)=O\left(n^{\left\lfloor\left(\frac{(t-2) k}{t-1}\right\rfloor\right.}\right)=O\left(n^{k-1}\right)
$$

Theorem (He, Nie, S. 2021)
For all $k \leq 4$, we have

$$
m_{3}(n, k)=O\left(n^{\lfloor k / 2\rfloor}\right)
$$

Open Problems

Conjecture

$$
m_{3}(n, 5)=\Theta\left(n^{5 / 2}\right)
$$

Open Problems

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_{5}, then it contains at most $O\left(n^{5 / 2}\right) 5-M I S$'s.

Open Problems

Proposition (He, Nie, S. 2021)

If G is an n-vertex graph which is the subgraph of a blowup of C_{5}, then it contains at most $O\left(n^{5 / 2}\right) 5$-MIS's.

Conjecture

If G is an n-vertex subgraph of a blowup of a k-vertex triangle-free graph H, then G contains at most $O\left(n^{k / 2}\right) k-M I S$'s.

Open Problems

Question

Are the $o(1)$ terms in our exponents necessary when $t \geq 4$? In particular, is it true that

$$
m_{4}(n, 3)=n^{2-o(1)}
$$

Open Problems

Question

Are the $o(1)$ terms in our exponents necessary when $t \geq 4$? In particular, is it true that

$$
m_{4}(n, 3)=n^{2-o(1)} .
$$

Proposition

If G is an n-vertex tripartite graph, then G has at most $n^{2-o(1)}$ 3-MIS's.

Open Problems

Question

If G is an n-vertex K_{4}-free graph with "many" k-MIS's, is it true that G has chromatic number $O_{k}(1)$?

Open Problems

Question

If G is an n-vertex K_{4}-free graph with "many" k-MIS's, is it true that G has chromatic number $O_{k}(1)$?

Note that for K_{3}-free graphs it is easy to prove that if G has at least $1 k$-MIS, then $\chi(G) \leq k+1$

Open Problems

Proposition

If n is even and $2 n / 5 \leq k \leq n / 2$, then

$$
m_{3}(n, k) \geq(25 / 32)^{k-n / 2} 2^{n / 2}
$$

Summary

- The classical functions $m(n), m_{3}(n), m(n, k)$ have relatively simple answers, but combining them into $m_{t}(n, k)$ seems to give a much more complex problem.

Summary

- The classical functions $m(n), m_{3}(n), m(n, k)$ have relatively simple answers, but combining them into $m_{t}(n, k)$ seems to give a much more complex problem.
■ All of our constructions utilize Rusza-Szemerédi type graphs as building blocks, together with "twisted blowups" of these graphs.

Summary

- The classical functions $m(n), m_{3}(n), m(n, k)$ have relatively simple answers, but combining them into $m_{t}(n, k)$ seems to give a much more complex problem.
■ All of our constructions utilize Rusza-Szemerédi type graphs as building blocks, together with "twisted blowups" of these graphs.
- We think these constructions are essentially best possible, but upper bounds seem very difficult (partially because there are so many constructions).

Summary

- The classical functions $m(n), m_{3}(n), m(n, k)$ have relatively simple answers, but combining them into $m_{t}(n, k)$ seems to give a much more complex problem.
■ All of our constructions utilize Rusza-Szemerédi type graphs as building blocks, together with "twisted blowups" of these graphs.
■ We think these constructions are essentially best possible, but upper bounds seem very difficult (partially because there are so many constructions).
■ Many, many open problems remain!

